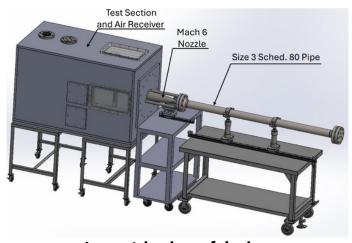
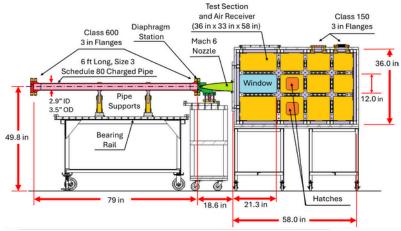
FINDLEY LACEY

MECHANICAL ENGINEERING AT FAIRFIELD UNIVERSITY


Finnlacey2@gmail.com

linkedin.com/in/Finn-lacey


(224) 229 - 8097

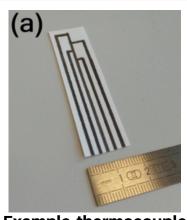
HYPERSONIC WIND TUNNEL DESIGN - FAIRFIELD UNIVERSITY

Isometric view of design

Cross-section view of design

What?

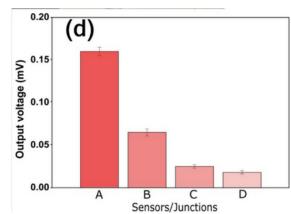
- Design and fabricate a wind tunnel Used SolidWorks and capable of reaching flow speeds of Mach 6 and above.
- Largest University Run test section Applied GD&T on all drawings Test section successfully achieved full on the East Coast
- Completed designs for driver tube, test section, and test article mount.


How?

- applicable parts from McMaster-Carr to aid design.
- Manufactured needed parts using Xometry.

Results

- Constructed facility in spring 2025,
- Driver Tube successfully passed ASME pressure test withstanding >1000 psi.
- vacuum in September 2025.
- Full test expected early October 2025.


GRAPHITE THERMOCOUPLE FOR HYPERSONIC FLIGHT EQUIPMENT - F

Example thermocouple

(c)HB 6B

Heat dissipation

Voltage output by junction

What?

- · Research efficacy and manufacturability of low cost, highly sensitive graphite thermocouples for hypersonic sensor applications.
- Design of consistent manufacturing technique.

- Test thermocouples using Hypersonic facility to simulate high flow, high friction environments.
- Design manufacturing apparatus to Functional testing awaiting wind ensure consistent graphite application to ceramic substrate.

Results

- Research is still in progress, exploring many graphite application processes.
- tunnel operation in October.