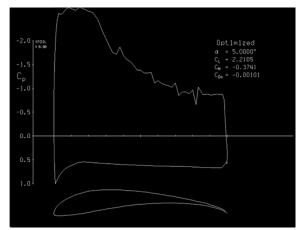

FINDLEY LACEY

MECHANICAL ENGINEERING AT FAIRFIELD UNIVERSITY



- linkedin.com/in/Finn-lacey
- (224) 229 8097

AIRFOIL DESIGN COMPETITION - FAIRFIELD UNIVERSITY

Excel and SolidWorks image of airfoil

XFOIL plot of lift and drag coefficients

What?

- Design and print a custom airfoil based on Used Airfoil tools to get base design Achieved an experimental lift coefficient a CLARK-Y airfoil design.
- Maximize Lift in 5m/s flow and 5 degree AoA. Additional credit for best stall angle. • Translated Selig file to **SolidWorks**.
- Use Airfoiltools.com and XFOIL software for blueprint and analysis

How?

- and **XFOIL** to analyze lift and drag. Placed **2nd** overall in competition.
- Test in Armfield C-15 wind tunnel.

Results

- and graphs, Exported plot into **Excel** of 1.71 and stall angle of 13 degrees.

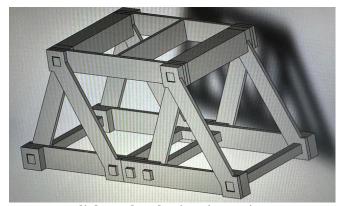
3D PRINTED INTERNAL COMBUSTION ENGINE - FAIRFIELD UNIVERSITY

Clamp style piston rod and crankshaft

Engine block final assembly

What?

- Design and print a model engine capable of withstanding the highest rpm.
- Design must stay within theoretical power and dimensional constraints.
- Theoretical horsepower and torque specs of a Coyote V8 engine.


How?

- Used SolidWorks to design engine applying **DFM** and **DFI** principles to allow for easy assembly and high performance.
- Applied GD&T on all designs to ensure proper fitment.
- Printed using Ender 3 Pro.

Results

- Successfully achieved 1710 rpm, failing at piston rod due to poor print quality.
- Placed 2nd in competition,
- SolidWorks files are corrupted.

3D PRINTED TRUSS BRIDGE- FAIRFIELD UNIVERSITY

SolidWorks design iteration 4

How?

Iteration 4 failure

What?

- calculations from engineering statics.
- · Design must stay within weight and dimensional constraints.
- Design and print a truss bridge using
 Used SolidWorks to design bridge pieces accounting for **DFM** practices for 3D-printers.
 - Performed GD&T and theoretical load calculations on all parts.
 - printed using an Ender 3 Pro

Results

- Successfully withstood 273 lbs load.
- Placed 1st in gradewide competition.
- SolidWorks files are corrupted.